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1. Introduction 

 
MC# programming language is an extension of the C# language and is intended for 

developing of concurrent and distributed programs. A concurrent program is a program 

which is intended for running on multicore/multiprocessor machines with shared 

memory. A distributed program is a program for running on the network of (possibly, 

multicore/multiprocessor) machines with separate memories. The clusters and Grids are 

the examples of systems for running of distributed programs. 

 

MC# programming language is based on the asynchronous parallel programming model 

which originally was introduced in the Polyphonic C# language 

(http://research.microsoft.com/en-us/um/people/nick/polyphony/). The given model 

proposes the high-level, concurrent constructions which turn the object-oriented С# 

language to parallel programming language. In particular, they provide all needed 

features which are required for parallel programming, namely, tools for  

1) creating, 

2) interaction (message passing) and 

3) synchronizing 

of concurrent processes. 

 

Such high-level constructs fit well into the object-oriented programming model and, in 

fact, free the programmer from the need to use the additional libraries (such as 

System.Threading library from .NET Framework, Microsoft Parallel Extensions for .NET 

and others). The mentioned above libraries have such shortcomings as, first of all, they 

introduce additional process-like notions as “thread” or “task”, and, secondly, they 

doesn’t support a distributed programming. 

 

In the given manual, novel constructs of MC# language are described and complete 

examples of their usage to develop concurrent and distributed programs are provided. 

The compilation and running rules for both types of programs can be found in “User’s 

Guide” which has been included into the install package of MC# programming system. 

 

2. Asynchronous methods 

 
In any traditional object-oriented language, conventional methods are synchronous: the 

caller always waits until the callee is completed and only then continues its work. The 

one of the key features of MC# is the introduction of so called asynchronous methods in 

addition to conventional synchronous ones. Asynchronous (and also movable − see 

below) methods are the only way to create concurrent and distributed processes in MC# 

programs. (The traditional tools to create concurrent processes and threads are accessible 

in C# programs through library function calls). 

 

The general syntax of asynchronous method declaration in MC# is the following: 

 

modifiers   async  method_name   ( arguments ) 

{ 



 < method body > 

} 

 

Note that the keyword async defining a method as asynchronous is placed instead the 

return type of the method. Correspondingly, we have the following rule which defines the 

syntax of return type in MC# language: 

 

 return_type ::= type   |   void    |   async   |   movable 

 

So the keyword movable defining corresponding method is placed also instead of the 

return type. 

 

Declaring a method with async keyword means that given method will be running locally 

in a separate thread. The differences of async-method from conventional synchronous 

method are the following: 

 

• async-method call completes almost immediately; i.e., after the call of it, a 

control is passing to the following statement without waiting of the 

former; 

• async-methods never return a result (for interaction and message passing 

among them see Section 3 “Channels and handlers”). 

 
By the rule of correct definition, async-methods in MC# 

 

• may not have a static modifier, 

• never use a return statement, and 

• ref, out and params modifiers can’t be applied to the formal parameters 

of such methods. 

 

Example 1. 

 
The example below demonstrates the using of asynchronous methods in the concurrent 

program for matrix multiplication. The program is intended for running on two 

processors (its extension to arbitrary number of processors can be a simple exercise for 

the reader). An object of ManualResetEvent type serves as a tool to determine 

termination of asynchronous methods. 



using System; 

public class MatrixMultiplier { 

  

public static int N = 1000; 

public static int count = 2; 

public static void Main ( String[] args )  { 

 double[]   a, b, c; 

 a = new double [ N, N ]; 

 b = new double [ N, N ]; 

 c = new double [ N, N ]; 

 Random r = new Random(); 

 for ( int i = 0; i < N; i++ ) 

  for ( int j = 0; j < N; j++ ) { 

   a [ i, j ] = r.NextDouble(); 

   b [ i, j ] = r.NextDouble(); 

   c [ i, j ] = 0.0; 

 } 

     

    MatrixMultiplier  mm = new MatrixMultiplier(); 

   using ( ManualResetEvent mre = new ManualResetEvent ( false ) ) 

  { 

   mm.multiply ( 0, N/2, a, b, c, mre ); 

   mm.multiply ( N/2, N, a, b, c, mre ); 

   mre.WaitOne(); 

  } 

} 

public async multiply ( int from, int to, double[,] a, double[,] b, double[,] c, 

                                     ManualResetEvent mre                                                 ) 

{ 

  for ( int i = from; i < to; i++ ) 

   for ( int j = 0; j < N; j++ ) 

    for ( int k = 0; k < N; k++ ) 

      c [ i, j ] += a [ i, k ] * b [ k, j ]; 

 if ( Interlocked.Decrement ( ref count ) == 0 ) 

  mre.Set() 

 } 

} 

 

Indeed, MC# language has its own high-level tools to support both an interaction of 

asynchronous methods (namely, data and signals transferring) and synchronization 

between them. Channels and handlers are such tools and they are considered in the next 

Section. 

 

3. Channels and handlers 

 
Channels and channel message handlers (or, simply, handlers) are the tools to support an 

interaction between concurrent or distributed processes. The second role of them is to 

serve as a synchronization tool for the processes. Syntactically, channels and handlers are 

declared using the special constructs − the chords. 

 

For example, the channel sendInt for transferring single integers is declared along with 

corresponding handler getInt as 



handler  getInt  int()   &   channel sendInt ( int  x )  { 

  return  x; 

 } 

 

In general, the chords (and, correspondingly, channels and handlers) are declared in MC# 

programs according to the following syntactical rules: 

 

chord-declaration ::=  [ handler-header & ] channel-header 

                                                        [ &  channel-header ]*   body 

handler-header ::= attributes modifiers handler handler-name 

                                                       return-type ( formal parameters ) 

channel-header ::= attributes modifiers channel channel-name  

                                                      ( formal parameters ) 

 

In above rules, the non-terminals body, attributes, modifiers, return-type and formal-

parameters are defined by C# standard syntactical rules. The non-terminals handler-

name and channel-name are the simple (non-qualified) identifiers. 

 

Channel and handler declarations are subject to the following restrictions: 

 

1) channels and handlers cannot be defined as static, 

2) modifiers ref, out and params cannot be applied to formal parameters of 

channels and handlers, 

3) if a handler has defined with return-type else than void in the chord, then every 

return statement in the chord body must return a value of return-type; 

4) all identifiers for channel and handler parameters in the chord must be unique. 

 

The important key feature of MC# language is that channels and handlers can be passed 

as arguments to methods (in particular, to async- and movable methods) separately from 

the object to which they belong (in other words, from the object within which they has 

been defined). In this sense, channels and handlers are similar to the pointers to functions 

in C/C++, or, in C# terms, to delegates. Accordingly, the type system of MC# language 

includes the types for channels and handlers: 

 

 type ::= chanel-type   |   handler-type   |   … 

 channel-type ::= channel ( type-list ) 

 handler-type ::= handler retur-type ( type-list ) 

 type-list ::=          //  empty list 

                                  |  type [ , type ]*  

 

The difference between channels and handlers and other types (both scalar and reference) 

is in that they can be declared only within the chords with obligatory defining of the 

chord’s body. As a consequence, channels and handlers cannot be declared similar to the 

convenient types; for example, a declaration as 

 

 public  channel   с1; 



 

is not allowed. Correspondingly, there are no ways to declare both channel and handler 

arrays directly and to use an assignment statement for channels and handlers. But it 

should be noted that due to that channels and handlers are always parts of objects within 

which they has been declared , all mentioned above operations can be implemented by 

using such objects indirectly. For example, to declare an array of channels it’s enough to 

declare an array of objects, which, in turn, contains the corresponding channels (see 

suitable illustrations in Section 5 “Example programs”). 

 

The syntax of statement to send value through the channel in much is similar to invoke an 

ordinary method: 

 

 [ qualified-object-name. ] channel-name ! ( argument-list ); 

 

Thus, we may send an integer x by the channel sendInt as 

 

   a.sendInt ! ( n ); 

 

where a is an object for which the channel sendInt has been defined. 

 

The syntax of statement to call a handler has the dual form: 

 

 [ qualified-object-name.] handler-name ? ( argument-list ); 

 

For handler which returns a value, we need to cast this value before assigning it to the 

some variable. For example, to receive an integer value by the handler getInt we need to 

write 

 

   int   x = (int) a.getInt ? (); 

 

If, by the time a handler is called, the corresponding channel is empty (i.e. if there have 

been no calls to this channel at all or all of the values sent through this channel before 

were absorbed during previous calls to the handler), then the call blocks and the program 

passes to wait state. If a handler is tied with few channels in the chord, a blocking state 

comes in the case when there is some empty channel. After receiving a value from the 

channel (or, in general case, all channels have values), body of the chord executes and 

returns a result value through the handler. 

 

Conversely, if a value is sent on a channel when there are no pending calls to the handler, 

the value is simply saved in the internal queue of channel, where all the values coming 

with multiple sendings over the channel are accumulated. After invoking the handler and 

under condition that all channels from the chord contain the values, the first values from 

the channels queues will be selected for handling. 

 

It is worth to note that triggering of the chord consisting from the handler and a few 

channels is possible principally due to they are called typically from the different threads. 



 

Example 2. 
 

The current example illustrates the running of several async-methods where each of them 

takes the channel sendStop as one of the arguments. After termination, each of the async-

methods sends a stop signal to the main program through the call 

 

   sendStop ! ( ); 

 

The main program receives a corresponding number of stop signals from the async-

methods in the for loop: 

 

   for  ( i = 0; i < N; i++ ) 

     atc.getStop ? (); 

 
using System; 

public class AsyncTerminationClass { 

 public static int N = 10; 

 public static void Main ( String[] args )   { 

   int  i; 

   AsyncTerminationClass atc = new AsyncTerminationClass(); 

   for ( i = 0; i < N; i++ ) 

    atc.a_method ( i, atc.sendStop ); 

   for ( i = 0; i < N; i++ ) 

    atc.getStop ?(); 

  } 

  public async a_method ( int myNumber, channel () sendStop ) 

  { 

   Console.WriteLine ( “Process “ + myNumber ); 

   sendStop ! (); 

  } 

  public handler getStop void()   &   public channel sendStop ()  { 

   return; 

  } 

} 

   

 

Example 3. 

 
The example below demonstrates the using of chords as a synchronization tool. The body 

of the chord  

 

 public handler  Get2 long ()  & channel  c1 ( long x ) 

                                                      & channel  c2 ( long y ) 

 { 

  return  ( x + y ); 

 } 

 



can be triggered and the handler Get2 will return a value only both channels c1 and c2 

have the values. In general, one handler can be joined with an arbitrary number of 

channels. 

 

A chord of the above mentioned form is used typically 

a) to detect a termination of async-methods, and 

b) to take the values from them. 

 

In the sample shown below − a program to compute Fibonacci numbers, a computation of 

n
th

 Fibonacci number is reduced to the recursive computation of n-1
th

 and n-2
th

 Fibonacci 

numbers asynchronously. The corresponding chord allows to detect the termination of 

recursively called methods and to take the result values from them. 

 
using System; 

public class Fib 

{ 

 public handler Get2 long() & channel c1( long x ) & channel c2( long y ) { 

  return x + y; 

 } 

 public async Compute( long n, channel( long ) c ) 

 { 

  Console.WriteLine( "Compute: n=" + n ); 

  if ( n <= 1 ) 

   c ! ( 1 ); 

  else 
  { 

   new Fib().Compute( n-1, c1 ); 

   new Fib().Compute( n-2, c2 ); 

   c ! ( (long)Get2 ? () ); 

  } 

 }  

} 

 

public class ComputeFib 

{ 

 handler Get long() & channel c( long x ) { 

  return x; 

 } 

 public static void Main( string[] args ) 

 { 

  if ( args.Length < 1 ) 

  { 

   Console.WriteLine( "Usage: Fib.exe <number>" ); 

   return; 

  } 

  int n = System.Convert.ToInt32( args [ 0 ] ); 

  ComputeFib cf = new ComputeFib(); 

  Fib fib = new Fib(); 

  fib.Compute( n, cf.c ); 

  Console.WriteLine( "For n = " + n + " value is " + cf.Get?() ); 

 } 

} 



 

 

4. Distributed programming in MC# 

 
By “distributed programming” we mean a writing of programs which intended to run on 

2 or more computers (for example, on computational cluster having one main and many 

work nodes). 

 

The distinctive feature of MC# language is that it preserves a single programming model 

both for the concurrent (local) and distributed cases: async-methods are used to create 

local asynchronous threads, while movable methods are used to create threads which can 

be scheduled to execute on remote machines. 

 

The syntax rules to declare the movable methods are similar to the rules for async-

methods with that exception that movable methods may have only public modifier: 

 

 [ public ] movable  method_name   ( arguments ) 

 { 

  < method body > 

 } 

 

The distinctions of movable methods from conventional methods and the rules of correct 

definition of the former coincide with the ones for async-methods (see Section 2 

“Asynchronous methods”). 

 

During development of distributed programs in MC# language it is necessarily to take 

into account some properties of performing of distributed programs. These properties 

follow from the rules of object passing between the machines which perform a distributed 

MC# program. 

 

First of all, the objects created during of MC# program execution are static by their 

nature: once created, they remain bound to the place (machine) where they were created 

and don’t move further. But when we invoke a movable method, all necessary data, 

namely 

1) the object itself to which the given movable method belongs, and 

2) arguments of call (both scalar and reference values) 

are only copied (but not moved) to the remote machine. As a consequence, changes made 

afterwards to the copy at remote machine will not affect the original object. 

 

Example 4. 

 
In the code below, an invoke of movable method Compute, which alters the field x, 

doesn’t change that field of object b in the main program. 



class A  { 

 public static void Main ( String[] args )   { 

  B  b = new B (); 

  b.x = 1; 

  Console.WriteLine ( “Before movable method call: x = “ + b.x ); 

  b.Compute (); 

  Console.WriteLine ( “After movable method call: x = “ + b.x ); 

 } 

} 

 

class B  { 

 

  public int x; 

 public B ()  { }  

 

 movable Compute ()   { 

   x = 2; 

 } 

 

} 

 

A running of that program gives the output 

 
Before movable method call: x = 1 
After movable method call: x = 1 

 

Example 5. 

 
For the program from Example 3 it is easy to make its distributed version by replacing 

async keyword by movable in the declaration of Compute method: 



using System; 

public class Fib 

{ 

 public handler Get2 long() & channel c1( long x ) & channel c2( long y ) { 

  return x + y; 

 } 

movable Compute( long n, channel( long ) c ) 

 { 

  Console.WriteLine( "Compute: n=" + n ); 

  if ( n <= 1 ) 

   c ! ( 1 ); 

  else 
  { 

   new Fib().Compute( n-1, c1 ); 

   new Fib().Compute( n-2, c2 ); 

   c ! ( (long)Get2 ? () ); 

  } 

 }  

} 

public class ComputeFib 

{ 

 handler Get long() & channel c( long x ) { 

  return x; 

 } 

 public static void Main( string[] args ) 

 { 

  if ( args.Length < 1 ) 

  { 

   Console.WriteLine( "Usage: Fib.exe <number>" ); 

   return; 

  } 

  int n = System.Convert.ToInt32( args [ 0 ] ); 

  ComputeFib cf = new ComputeFib(); 

  Fib fib = new Fib(); 

  fib.Compute( n, cf.c ); 

  Console.WriteLine( "For n = " + n + " value is " + cf.Get?() ); 

 } 

} 

 

Recall (see Section 3) that channels and handlers can be passed as arguments to the 

movable methods separately from the object to which they belong. One of the key feature 

of execution of distributed MC# programs is that if channels and handlers were copied 

to a remote machine autonomously or as part of some object, then they become proxy 

objects, or intermediaries for the original channels and handlers. This replacement is 

hidden from the applied programmer − he can use the passed channels and handlers (in 

fact, their proxy objects) on the remote machine as the original ones: as usual, all actions 

over the proxy objects are redirected to the original channels and handlers by the 

Runtime-system. In this sense, channels and handlers are different from convenient 

objects: modifications of the latter on a remote machine are not passed to the original 

objects. 

 



Below Fig.1 and Fig.2 demonstrate schematically the passing and use of channels and 

handlers on a remote machine. The superscripts on the channel and handler names denote 

the name of the machine where they were created originally. 

 

  
 
  Fig. 1.  Message sending through remote channel:    

   (0) copying of the channel to remote machine, 

   (1) message sending through (remote) channel, 

   (2) message redirection to the original machine. 

 

 
 

 Fig. 2. Message reading from remote handler: 

(0) copying of the handler to remote machine, 

(1) message reading from (remote) handler, 

(2) reading redirection to the original machine, 

(3) message return from the original machine, 

(4) result message return. 

 

Note. 

 
During development of distributed applications, a programmer must seek to minimize as 

far as possible a creation of proxy-objects for channels and, especially, for handlers. 

Sometimes it is possible to build an equivalent variant of the program in which proxy-

objects for handlers are absent that allows to avoid a reading from remote machines (see 

an example of such equivalent variant in Section 5.1 “Fibonacci numbers”). 

 

It turns out that channels, handlers and chords are enough tools to organize an interaction 

of arbitrary complexity among the concurrent or distributed processes that has been 

demonstrated in the examples of the next Section.
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5. Sample programs  

 
In this section, sample programs are presented which illustrate the use of specific 

constructs of MC# language − async- и movable methods, channels, handlers and 

chords. Initial information about developing effective algorithms in MC# is given. 

Complete code for sample programs can be found in the installation package of MC# 

programming system. 

 

5.1 Fibonacci numbers 

 
The concurrent and distributed programs to compute Fibonacci numbers have been 

presented in Examples 3 and 5 (see Sections 3 and 4, correspondingly). These programs’ 

main goal was to demonstrate specific constructs of MC# language in action. 

 

However these programs are very inefficient from a computational point of view, because 

each newly created thread performs just a small number of computational operations − it 

spawns two child threads and sends the result to the channel. For this case, the overhead 

of creating and running threads by many times exceeds the number of useful 

computational operations. 

 

One of the methods to improve efficiency of such kind of programs is to introduce a 

special THRESHOLD for input parameter. If the input parameter is equal to or less than 

the THRESHOLD, the former is proceeded serially, without thread spawning. Otherwise 

the input value is proceeded in a parallel mode spawning threads until the input for the 

next recursive call is equal to or less than the THRESHOLD. 

 

Example 6 

 
The given example demonstrates a modified class Fib which uses a THRESHOLD for 

the input parameter of function Compute. Also it applies function cfib to compute the n’
th

 

Fibonacci number serially. 



public class Fib 

{ 

   public static int THRESHOLD = 35; 

   public handler Get2 long() & channel c1( long x ) & channel c2( long y ) { 

      return x + y; 

   } 

   public async Compute( long n, channel( long ) c ) 

   { 

     Console.WriteLine( "Compute: n=" + n ); 

     if ( n <= THRESHOLD ) 

      c ! ( cfib( n ) ); 

     else 
    { 

      new Fib().Compute( n-1, c1 ); 

      new Fib().Compute( n-2, c2 ); 

      c ! ( (long)Get2 ? () ); 

     } 

    } 

    private long cfib( long n ) 

   { 

     if ( n <= 1 ) 

      return n; 

     else 
     return cfib( n - 1 ) + cfib( n - 2 ); 

   } 

} 

 

 

The program from Example 6 is more effective than the one from Example 3. 

Nevertheless each thread with the input parameter greater than the THRESHOLD still 

performs a small number of useful operations creating two child threads only. But there is 

a so called a “linear” variant of the parallel program to compute Fibonacci numbers. The 

essence of it is to compute two recursive calls to Compute differently: one is computed 

serially and the other is computed by a newly created async-method. So to compute 

(THRESHOLD + N)
th

 Fibonacci number we need N + 1 concurrent threads. 

 

Example 7 

 
Here is a modified class Fib which implements a linear variant of the concurrent program 

to compute Fibonacci numbers: 

 



public class Fib 

{ 

   public static int THRESHOLD = 35; 

 

 public handler Get int()  & channel c1( int x ) { return x ; } 

 

 public async Compute( int n, channel( int ) c ) 

 { 

  if ( n <= THRESHOLD ) 

   c ! ( cfib( n ) ); 

  else { 

   new Fib().Compute( n - 1, c1 ); 

   c ! ( cfib( n - 2 ) + (int) Get ? () ); 

  } 

 }  

 private int cfib( int n ) { 

  if ( n <= 1 ) 

   return ( n ); 

  else 
   return ( cfib( n - 1 ) + cfib( n - 2 ) ); 

 } 

} 

 

Earlier we have presented (see Example 5) a distributed program to compute Fibonacci 

numbers. Note that in it (as and in Example 3) an expression for recursive call of 

Compute method has the form 

 

  new Fib().Compute ( value, channel_name ); 

 

Here,  creating a new object of class Fib every time is necessary  to form a tree-like 

system of channels and handlers by means of which the recursively called methods return 

resulting values to the parent methods. (The interested reader may keep on what  happens 

if we will spawn recursive calls to Compute method without constructing new objects). 

 

In the distributed case, such version of the program will be ineffective due to creating a 

great number of proxy-handlers, and, as consequence, creating a great number of reading 

operations from remote machines. Suppose some current call to Compute method is 

executed on machine M1. While this is being done, the recursive computation of the 

expression 

 

 new Fib().Compute ( n - 1, c1 ); 

 

creates a new object of class Fib, which will have its own channels c1 and c2 and its 

handler Get2. Invoking this object’s movable method Compute will result in that some 

machine M2 will be scheduled to execute the method. The above-mentioned object of 

class Fib will be copied to M2, where the object’s channels and handlers will become 

proxy-objects for the original ones located on machine M1. Therefore, invoking the 

handler  

   Get2 ? () 

 



on machine M2 will lead to remote reading from machine M1. 

 

Example 8 

 
This example shows how to make the distributed Fibonacci program more efficient by 

avoiding proxy-handlers. For this purpose it is enough 

 

1) to place a chord containing handler Get2 and channels c1 and c2 into the 

separate class; 

2) to provide for creating an object of that class inside the Compute method; this 

will result in creating channels and handlers exactly on that machine where 

the Compute method is executed. 

 

The additional class Comm and modified class Fib are shown  below. 

 

 
public class Comm 

{ 

  public handler Get2 long() & channel c1( long x ) & channel c2( long y ) { 

    return x + y; 

  } 

} 

 

public class Fib { 

 movable Compute( long n, channel( long ) c ) 

 { 

  Comm comm = new Comm(); 

  if ( n <= 1 ) 

   c ! ( n ); 

  else 

  { 

   new Fib().Compute( n-1, comm.c1 ); 

   new Fib().Compute( n-2, comm.c2 ); 

   c ! ( (long)comm.Get2 ? () ); 

  } 

 } 

} 

 

 

 

5.2 All2all program 

 
As was mentioned above, channels and handlers are sufficient tools to arrange arbitrary 

pattern interactions among the concurrent and distributed processes. One of the wide-

spread types of such patterns is “all2all”, in which each process from a group of 

processes exchanges messages with any other process from the group. 

 

To organize such pattern in MC# program we need to carry out 3 preliminary steps 

before the basic interaction begins: 

 



1) each process must create a channel (along with the corresponding handler) by 

which other processes can send messages to it; that chord “channel-handler” is 

placed into the object interact_bdc of class BDChannel (bi-directional 

channel); 

2) each process must send its interact_bdc object to the main program, which 

collects all of them in the array interact_bdchans; 

3) main program must send the interact_bdchans array to each process in the 

group. 

 

After these steps, each process will have possibility to send messages to any other 

process from the group through the channels collected in the interact_bdchans array. 

 

 

Example 9 

 
The complete code of program all2all is shown below. Note that each process creates 

along with object interact_bdc also object bdc of class BDChannel. This object is 

intended for receiving object array interact_bdchans from the main program. In fact, 

there are two ways to avoid creating object bdc: 

 

1) to use the object interact_bdc to transfer the array interact_bdchans from the 

main program; but in this case we need to have more complex messages 

passed by object interact_bdc, because we need now to point out the message 

source − main program or process from the group; 

2) to pass to the process as an additional parameter some special handler from 

the main program; this handler belongs to the chord which contains the 

channel to transfer the array interact_bdchans from the main program. 

 

An interested reader has chance to implement these alternative variants of program 

all2all as an exercise. 

 
using System; 

class   BDChannel   { 

 public handler  Receive object() & channel Send ( object obj )  { 

   return  ( obj ); 

 } 

} 

class  All2all   { 

 public static void Main (String[] args)   { 

  int  i; 

  // N is a number of processes 

  int  N = System.Convert.ToInt32 ( args [ 0 ] ); 

  All2all a2a = new All2all(); 

  DistribProcess dproc = new DistribProcess(); 

  //   Run the processes 

  for ( i = 0; i < N; i++ ) 

    dproc.Start ( i, a2a.sendBDC, a2a.sendStop ); 

  //   Receive the (BD)channels from the processes 

  BDChannel[] bdchans          = new BDChannel [ N ]; 

  BDChannel[] interact_bdchans = new BDChannel [ N ]; 



  for ( i = 0; i < N; i++ ) 

    a2a.getBDC ? ( bdchans, interact_bdchans ); 

  //   Send a (BD)channel array to every process 

  for ( i = 0; i < N; i++ ) 

     bdchans [ i ].Send ! ( interact_bdchans ); 

  //   Receive the stop signals from the processes 

  for ( i = 0; i < N; i++ ) 

    a2a.getStop ? (); 

 } 

 public handler getBDC void( BDChannel[] bdchans, BDChannel[] interact_bdchans )  & 

       channel sendBDC ( int i, BDChannel bdc, BDChannel interact_bdc )      { 

    bdchans [ i ]          = bdc; 

    interact_bdchans [ i ] = interact_bdc; 

 } 

 public handler  getStop void() & channel  sendStop() { 

   return; 

 } 

} 

class DistribProcess   { 

 movable Start ( int  myNumber, channel  (int, BDChannel, BDChannel ) sendBDC, 

                                     channel () sendStop ) { 

  int   i; 

  BDChannel  bdc          = new BDChannel(); 

  BDChannel  interact_bdc = new BDChannel(); 

  sendBDC ! ( myNumber, bdc, interact_bdc ); 

  BDChannel[]   interact_bdchans  =  (BDChannel[]) bdc.Receive ? (); 

  //   Send message to other processes 

  for  ( i = 0; i < interact_bdchans.Length; i++ ) 

   if  ( i != myNumber ) 

     interact_bdchans[i].Send ! ( myNumber ); 

  //   Receive messages from other processes 

  //   (here it is possible to use  interact_bdchans [ myNumber ] channel ) 

  // 

  for  ( i = 0; i < interact_bdchans.Length - 1; i++ ) 

    Console.WriteLine ( myNumber + " <- " + interact_bdc.Receive ? () ); 

  //   Send stop signal 

  sendStop ! (); 

 } 

} 

 

 

5.3 Conway’s “Game Of Life” 

 
The Conway’s “Game Of Life” is a simple mathematical model of evolution of living cell 

community. A field of game is a rectangular area where each cell can be in one of two 

states − ALIVE or DEAD. A computer modeling of community of living cells consists of 

an iterative recomputation of each cell’s state. In general, the state of a cell depends on 

the states of neighboring cells. The precise rules of game can be found in the directory 

Examples/Async/IntelThreading/Challenge/GameOfLife of installation package of MC# 

programming system. 

 

The essence of parallel implementation of the “Game Of Life” is a partitioning of 

rectangular area into a number of horizontal stripes according to the number of parallel 



threads. Each parallel thread interacts with the neighboring threads which handle the 

stripes located above and below its own stripe. This is necessary to take into account the 

influence that the  border cells of neighboring stripes have on each other. 

 

The interaction pattern implemented in MC# program is based on using a comms  array 

containing objects of class Communicator. The object comms[i] (0 ≤ i < number of 

threads – 1) provides interaction between the thread i and thread i+1. The interaction 

consists of sending signals: the thread i sends signals to thread i-1 by channel toUp and 

sends signals to thread i+1 by channel toDown. The thread i-1 receives the signals 

through the handler fromDown, and the thread i+1 receives the signals through the 

handler fromUp. 

 

On each iteration, each parallel thread performs the following actions: 

 

1) it modifies the states of cells from its own stripe invoking the functions Vivify 

and Kill; simultaneously, it prepares information for neighboring threads in 

up_deltas and down_deltas arrays; 

2) when data in up_deltas and down_deltas arrays are ready, it sends the signals 

by the channels toUp and toDown; 

3) it receives the “data are ready” signals from the neighboring threads through 

the fromUp and fromDown handlers; 

4) it recomputes the states of border cells based on the data received from the 

neighboring threads; 

5) when the handling of up_deltas and down_deltas arrays from the neighboring 

threads has been finished, it sends the corresponding signals by channels toUp 

and ToDown; 

6) it receives the signals reporting the completion of corresponding work from 

neighboring threads through fromUp and fromDown handlers. 

 

Shown below is the code for the basic loop of the parallel thread that handles a separate 

stripe of the game area: 



//    Iterations ( building the generations of cells ) 

  while ( gencount < gens )   { 

 

   gencount++; 

 

   Vivify ( ownNumber, first, last, P, maylive, newlive ); // maylive |--> newlive 

   maylive.Clear(); 

   Kill   ( ownNumber, first, last, P, maydie, newdie   ); // maydie  |--> newdie 

   maydie.Clear(); 

 

   if ( ownNumber != 0 )                               // 

    comms [ ownNumber - 1 ].toUp ! ();       //        Deltas 

   if ( ownNumber != P - 1 )                          //         are 

    comms [ ownNumber ].toDown ! ();        //        ready 

 

   if ( ownNumber != 0 )                                  // 

    comms [ ownNumber - 1 ].fromUp ? ();     //    Wait the deltas 

   if ( ownNumber != P - 1 )                            //         from the 

    comms [ ownNumber ].fromDown ? ();      //     neighbor threads 

 

   AddNeighbors ( first, last, newlive, maylive, maydie ); //    newlive |--> maylive, maydie 

   newlive.Clear(); 

   SubtractNeighbors ( first, last, newdie, maylive, maydie ); // newdie |--> maylive, maydie 

   newdie.Clear(); 

 

   if ( ownNumber != 0 ) 

    HandleDeltas ( ownNumber - 1, down_deltas, first, maylive, maydie ); 

   if ( ownNumber != P - 1 ) 

    HandleDeltas ( ownNumber + 1, up_deltas, last, maylive, maydie    ); 

 

   if ( ownNumber != 0 ) 

    comms [ ownNumber - 1 ].toUp ! (); 

   if ( ownNumber != P - 1 ) 

    comms [ ownNumber ].toDown ! (); 

 

   if ( ownNumber != 0 )                                 //       Wait 

    comms [ ownNumber - 1 ].fromUp ? ();    //    the finishing 

   if ( ownNumber != P - 1 )                          //    of deltas handling 

    comms [ ownNumber ].fromDown ? ();    //    by the neighbor threads 

 

  } 

 

 

The complete code of program “Game Of Life” can be found in the directory 

Examples/Async/IntelThreadingChallenge/GameOfLife of the installation package of 

MC# programming system. 

 

5.4 LINQ based image rendering 

 
Starting with version 2.1, MC# language supports all C# 2.0 and 3.0 novel constructions 

such as lambda-functions, LINQ-expressions etc. 

 



The directory Examples/Async/SimpleLinqRayTracer of installation package of MC# 

programming system contains an image rendering program based on ray tracing 

technique. Basic parts of this ray tracing algorithm are presented as LINQ-expressions. In 

particular, the function that finds points of intersection of a given ray with all objects of 

the scene has the form 

 
private IEnumerable<ISect> Intersections(Ray ray, Scene scene) 

{ 

  return scene.Things 

               .Select(obj => obj.Intersect(ray)) 

               .Where(inter => inter != null) 

               .OrderBy(inter => inter.Dist); 

 } 

 

To parallelize the entire image rendering, we divide the image into vertical stripes. The 

number of stripes equals the number of processors we have. For each stripe we start the 

asynchronous method render to handle that stripe: 

 
int q = screenWidth / P, 

       r = screenWidth % P; 

 

int from = 0, 

     to; 

 

for ( i = 0; i < P; i++ ) { 

 to = from + q + ( i < r ? 1 : 0 ); 

 this.render ( i, from, to, scene, rgb, this.sendStop ); 

 from = to; 

} 

 

The asynchronous method render computes the color in each pixel of the stripe. The 

function setPixel writes a computed color to the array rgb shared by all parallel threads: 

 
internal async render ( int myNumber, int from, int to, Scene scene, int[] rgb, channel () sendStop ) {    

    

   for (int y = 0; y < screenHeight; y++) 

   { 

       for (int x = from; x < to; x++) 

       { 

        Color color = TraceRay(new Ray() { Start = scene.Camera.Pos, Dir = GetPoint(x, y,    

scene.Camera) }, scene, 0); 

         setPixel(x, y, color ); 

       } 

      sendStop ! (); 

  } 

 

The complete code of the program can be found in the directory 

Examples/Async/SimpleLinqRayTracer. 

 



Concerning the image rendering program, we would like to stress some specific property 

of developing MC# programs. This property may have a great influence on the efficiency 

of MC# programs performance. 

 

In general, the MC# compiler translates every class of MC# program into the 

corresponding C# class extended in a special way to support message passing 

(particularly, in distributed mode) through the channels that the original class may have. 

Such extension may have an influence on the entire performance of application, 

especially in the case when application creates a very large number of objects based on 

MC# class. But often application has a set of classes that do not use the specific 

constructs of MC# language − async- and movable methods, channels, handlers and 

chords. Therefore to increase entire efficiency of application it is reasonable to collect all 

such classes in separate C# modules. Such C# modules (.cs-files) can be used as input to 

the MC# compiler along with .mcs-files because the MC# compiler leaves .cs-files 

unchanged. In particular, in the program SimpleLinqRayTracer all image rendering 

specific functions which have no relation with parallel handling are collected in separate 

file Classes.cs. 

 

5.5 N-Queens problem 

 
The N-Queens problem is a problem to place N queens on an N x N chess board such that 

no queen can attack another. As usual, it is considered that one queen attacks another if 

they share the same horizontal or vertical or diagonal. Finding the number of all possible 

arrangements is the goal of the problem. Below we consider a parallel solution of N-

Queens problem in MC# language. 

 

The basic algorithm implemented in the MC# 

program is a bit-vector solution with only .bit 

operations (see Qiu Zongyan’s paper “Bit-Vector 

Encoding of N-Queen Problem”). 

 

Omitting algorithm’s details, we present below only a 

parallelization scheme for it. Note once more that due 

to universality of programming model exploited in 

MC# language, the concurrent and distributed 

variants of the program differ from one another only 

by the keyword –  async or movable – used to 

marked the method running in the parallel thread. 

 

The technique for the parallelization of N-Queens problem solution is the following. At 

first we determine all possible placements of M queens on the first M rows of the chess 

board (where M ≤ N and rows are numbered top down). Each such placement is 

considered as a task representing the placement by the three vectors left, down and right. 

All generated tasks are sent to the channel sendTask. The parallel threads draw out the 

tasks from the channel through the handler getTask. 

 



The parallel thread (Worker) extracts the next task, computes the number of all possible 

placements of N – M queens on the lower N – M rows, with M queens being fixed on the 

first M rows, and sends the result to the main program simultaneously with the call for a 

new task. By this way we have a simple technique for workload balancing − those threads 

that handle tasks faster will extract more tasks from the queue of channel sendTask. 

 

Listed below is the complete code of the program which uses an asynchronous method 

Worker. A distributed variant of this program can be obtained by replacing async 

keyword to movable in the declaration of method Worker. 

 
using System; 

public class Task   { 

 public int left, down, right; 

 public Task ( int l, int d, int r ) { 

  left  = l; 

  down  = d; 

  right = r; 

 } 

} 

//**************************************************// 

public class NQueens   { 

 public static long totalCount = 0; 

 public static void Main ( String[] args ) { 

  int   N = System.Convert.ToInt32 ( args [ 0 ] );   //  Board size 

  int   M = System.Convert.ToInt32 ( args [ 1 ] );   //  Number of fixed queens 

  int   P = System.Convert.ToInt32 ( args [ 2 ] );   //  Number of workers 

  NQueens nqueens = new NQueens(); 

  nqueens.launchWorkers ( N, M, P, nqueens.getTask, nqueens.sendStop, nqueens ); 

  nqueens.generateTasks ( N, M, P, nqueens.sendTask ); 

  for ( int i = 0; i < P; i++ ) 

   nqueens.getStop ? (); 

  Console.Write     ( "Task challenge : " + N + "   " ); 

  Console.WriteLine ( "Solutions = " + totalCount ); 

 } 

 //******************************************************************************// 

 public handler getTask Task(int count ) & channel sendTask ( Task task ) { 

  totalCount += count; 

  return ( task ); 

 } 

 //******************************************************************************// 

 public handler getStop void() & channel sendStop () { 

  return; 

 } 

 //******************************************************************************// 

 public async launchWorkers ( int N, int M, int P, handler Task(int) getTask, 

                              channel () sendStop, NQueens nqueens            ) { 

  for ( int i = 0; i < P; i++ ) 

   nqueens.Worker ( i, N, M, getTask, sendStop ); 

 } 

 //******************************************************************************// 

 public void generateTasks ( int N, int M, int P, channel (Task) sendTask ) { 

  int   y     = 0; 

  int   left  = 0; 

  int   down  = 0; 



  int   right = 0; 

  int   MASK  = ( 1 << N ) - 1; 

  MainBacktrack ( y, left, down, right, MASK, M, sendTask ); 

  Task finish_marker = new Task ( -1, -1, -1 ); 

  for ( int i = 0; i < P; i++ ) 

   sendTask ! ( finish_marker ); 

 } 

 //********************************************************************************// 

 public void MainBacktrack ( int y, int left, int down, int right, int MASK, 

                             int M, channel (Task) sendTask                  ) { 

  int   bitmap, bit; 

  if ( y == M ) 

   sendTask ! ( new Task ( left, down, right ) ); 

  else   { 

   bitmap = MASK & ~ ( left | down | right ); 

   while ( bitmap != 0 )   { 

    bit   = -bitmap & bitmap; 

    bitmap = bitmap ^ bit; 

    MainBacktrack ( y + 1, ( left | bit ) << 1, down | bit, ( right | bit ) >> 1, 
                    MASK, M, sendTask                                            ); 
   } 
  } 
 } 
 //********************************************************************************// 
 public async Worker ( int myNumber, int N, int M, handler Task(int) getTask, 
                  channel () sendStop                                    ) { 
  int    MASK  = ( 1 << N ) - 1; 
  int    count = 0; 
  Task   task  = (Task) getTask ? ( count ); 
  while ( task.left != -1 )   { 
   WorkerBacktrack ( M, task.left, task.down, task.right, MASK, N, ref count ); 
   task  = (Task) getTask ? ( count ); 
   count = 0; 
  } 
  sendStop ! (); 
 } 
 //********************************************************************************// 
 public void WorkerBacktrack ( int y, int left, int down, int right, int MASK, 
                               int N, ref int count                           ) { 
  int   bitmap, bit; 
  if ( y == N ) 
   count++; 
  else   { 
   bitmap = MASK & ~ ( left | down | right ); 
   while ( bitmap != 0 )   { 
    bit   = -bitmap & bitmap; 
    bitmap = bitmap ^ bit; 
    WorkerBacktrack ( y + 1, ( left | bit ) << 1, down | bit, ( right | bit ) >> 1, 
                    MASK, N, ref count                                             ); 
   } 
  } 
 } 
} 

 
                                                 



The sample output of the distributed program (problem size is N = 18) running on the 8 
two-processor nodes is given below. 
 
$ mono Distributed_NQueens.exe 18 3 16 /withlog /showstats /completeboot /np 8 
MC#.Runtime, v. 2.2.0.1176 
Application Guid: 0 
Task challenge : 18   Solutions = 666090624 
________________________________________________ 
==MC# Statistics================================ 
Number of movable calls: 16 
Number of channel messages: 3452 
Number of movable calls (across network): 16 
Number of channel messages (across network): 16 
Total size of movable calls (across network): 10944 bytes 
Total size of channel messages (across network): 2016 bytes 
Total time of movable calls serialization: 00:00:00.0849960 
Total time of channel messages serialization: 00:00:00.0035450 
Total size of transported messages: 852504 bytes 
Total time of transporting messages: 00:00:00.6773350 
Session initialization time: 00:00:01.2010060 / 1.201006 sec. / 1201.006 msec. 
Total time: 00:01:45.4398850 / 105.439885 sec. / 105439.885 msec. 
Number of movable calls (mc) per node: 
   1. 1 x node-41 | ********************    2 mc 12.50% 
   2. 1 x node-31 | ********************    2 mc 12.50% 
   3. 1 x node-32 | ********************    2 mc 12.50% 
   4. 1 x node-21 | ********************    2 mc 12.50% 
   5. 1 x node-22 | ********************    2 mc 12.50% 
   6. 1 x node-33 | ********************    2 mc 12.50% 
   7. 1 x node-24 | ********************    2 mc 12.50% 
   8. 1 x node-44 | ********************    2 mc 12.50% 
--- 8 of 8 nodes were used --- 

 

 
 
 
 


